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Abstract

Stable and efficient updates to the basis matrix factors are vital to the sim-
plex method. The "best" updating method depends on the machine in use and
how the update is implemented. For example, the classical product-form up-
date can take advantage of the vector hardware on current supercomputers, and
this helps compensate for its well known drawbacks. Conversely, the method
of Bartels and Golub performs well on conventional machines, but is difficult
to vectorize.

With vectorization in mind, we examine a method based on the block-LU
factors of an expanding basis. The partitioned matrix involved was introduced
by Bisschop and Meeraus (1977, 1980). The update itself was proposed by Gill,
Murray, Saunders and Wright (1984).

The main advantages of the block-LU update are that it is stable, it vec-
torizes well, and compared to the product-form update, the nonzeros increase
at about two thirds the rate. The update has been incorporated into MINOS
and tested on 30 large, sparse linear programming problems. Results are given
from runs on the Cray Y-MP.

1. Introduction

We wish to use the simplex method [Dan63] to solve the standard linear program,

minimize cTx

subject to Ax = b
1< x <U,

where A is an m by n matrix and c, x, 1, u, and b are of appropriate dimension.
The simplex method for linear programming (LP) is an active-set method for

optimization. At each iteration a rank-one modification (in the form of a column

"S.K. Eldersveld's research was supported by an IBM Graduate Technical Fellowship.

tThe material contained in this report is based upon research supported by the National Science

Foundation Grant ECS-8715153 and the Office of Naval Research Grant N00014-90-J-1242.



2 A Block LU Update

update) is made to a basis matrix B associated with constraints active at the current
point. After k updates, the columns of A may be permuted to the form (Bk Nk).
The next update replaces the p-th column a, of Bk by a column aq from Nk. It can
be written

Bk+1 = Bk + (a. - a,)eT  (1.1)

where ep is the p-th column of the identity matrix. The basis is used to solve for
the search direction y and the dual variables 7r in the following linear systems:

Bky = aq (1.2)

and
kT7r = Ck.- (1.3)

Stable and efficient basis updates are vital to the computational success of the
simplex method. The "best" updating method depends on the machine in use
and how the update is implemented. For example, the classical product-form (PF)
update,

Bk = BoT IT .. . Tk, (1.4)

can take advantage of the vector hardware on current supercomputers such as the
Cray X-MP and Y-MP. This helps compensate for its potential instability and for
the typically high rate of growth of nonzeros in the "eta" vectors representing the
elementary triangular factors Tk.

Conversely, the Bartels-Golub (HG) update [Bar7l],

Bk = LkUk, Lk = LOT 1 .T, (1.5)

performs well on conventional machines [Rei82, GMSW87] but is difficult to vectorize
fully because each Tk may be a product of triangular factors involving short vectors,
and Uk is altered in an unpredictable manner. The Forrest-Tomlin (FT) update
[FT72], also described by (1.5), makes simpler changes to Lk and Uk and is probably
more amenable to vectorization.

With vector machines in mind, we examine two further updates in Sections 2
and 3. We then discuss implementation details for the second method and present
computational results comparing a block-LU method to the BG update.

2. The Schur-complement update

As an alternative to (1.2), Bisschop and Meeraus [BM77, BM80] drew attention to
an augmented system/}kY = &q of the form

(Bo Vk)(y) aq (2.1)

where
Vk = (aq,...,aqk), Uk = (ep,. .. ,epk) (2.2)
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Initially, B0 is a basis matrix at the start of the first iteration. After a number of
iterations it may be necessary to factorize the current basis Bk and redefine it to be
B0 . Each aq, (j = 1,.... , k) corresponds to a basic column from A that has become
basic since the last refactorization of Bo.

System (2.1) is equivalent to (1.2). To see this, note that the equation Ukyl = 0
sets k elements of yt to zero, so that the remaining elements of Yi when combined
with Y2 give the solution y E R'.

The solution to (2.1) can be found by solving in order

Bow = aq, (2.3)

CkY2 = Ukw, (2.4)

Boy1 = aq - Vky2, (2.5)

where Ck = UkBo'Vk is the Schur-complement matrix. In general, this method
requires two solves with B0 as well as a single solve with the matrix Ck, which will
have a maximal dimension of k. If aq happens to be a column originally from B0 , we
have aq = Boe, for some s. In this case w = e, and (2.4) reduces to Cky2 = ei where
the i-th row of Uk is eT . In addition, (2.5) can be written as Bo(y - es) = -Vky2,

so that aq itself need not be known.
Likewise, the solution to (1.3) can be found by solving the equivalent system

( B~Z) ( "ri ) ( co) 26

and taking 7r = rl. That is, by solving in order

Boz = C0 , (2.7)

C =r2 = VkTz - dk, (2.8)

BoTiri = co - UTr2 . (2.9)

During Phase 1 o the simplex method, co in (2.6) and (2.7) may change for each
k, but in Phase 2, system (2.7) need be solved only once each time the basis is
refactorized. In addition, from equation (2.9) we see that UTr2 = Co - BTrl. This
implies that r2 corresponds to the set of reduced costs for columns of B0 that are
nonbasic at iteration k.

2.1. Advantages

The Schur-complement (SC) update for linear programming was first described by
Bisschop and Meeraus [BM77, BM80], one of whose aims was to provide an updating
technique with storage requirements that are independent of the problem size, m.
This is a unique feature.

The SC update shares an important advantage with the PF update, in that
the factors L0 and Uo are used many times without modification. On a vector
machine, the triangular solves with these factors can therefore be reorganized to
take advantage of the vector hardware, as recently shown in [ER90]. The greater
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stability of the SC update allows the overhead associated with this reorganization
to be spread over 100 iterations (say), whereas the PF update may fail a stability
test at any stage (in the worst case after only 1 or 2 iterations).

A further advantage of the SC and PF updates is that it is only necessary to
solve systems with Bo and BoT; we do not need to access the columns of B0 for
pricing. This may be important for specially structured problems. See [GMSW84,
pp. 578-580] for further discussion.

2.2. Stability

The matrix in (2.1) has the following block-triangular factorization:

[ k=  U = Uk B o-1I - Ck "

Recalling that Uk is composed of unit vectors, we see that if B0 is "reasonably well-
conditioned", then the first triangular factor is also reasonably well-conditioned. In
such cases, the Schur complement Ck tends to reflect the condition of Bk, which is
essentially the same as the condition of the true basis Bk.

This means that when Ck is updated, ill-conditioning need not persist (because
certain rows and columns of C1 are explicitly added or deleted). For example,
suppose bases B0 , B 1 , ... , Bk are all well-conditioned except for Bj. Then all of the
Schur complements will be well-conditioned except Ci, and hence all of the basis
factorizations will be well-conditioned except for the jth. This property, shared by
the BG update, defines our meaning of stability.

In short, the SC update is essentially as stable as the BG update, provided Bo
is well-conditioned. This cannot be said of the PF or FT updates. (Of course, the
BG update remains superior in being stable regardless of the condition of B0 .)

2.3. Comments

A discussion of the Schur comp!ement may be found in [Cot74]. Implementations
of a Schur-complement method for general LP problems are given in [Pro85], and
for specially structured linear programs in [Eld88].

Our original aim was to investigate the performance of the SC update on general
LP problems. The method was implemented, but it soon became evident that
the additional solves with B0 and B T were excessively expensive compared to the
BG update. The following variation was therefore chosen as a means of trading
workspace for time.

3. A block-LU update

Rather than using (2.10) we may factorize I1k in the following manner:

k=( B0 )=( C)( Y) (3.1)
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where
BoYk = V, Ck = UkYk. (3.2)

We see that the solution to (2.1) and hence Bkyk = aq may be obtained from

Bow = a., (3.3)

Cky2 = Ukw, (3.4)

= W - YkY 2. (3.5)

Likewise, the solution to BTir = Ck may be obtained from

= YTco -dk, (3.6)

BoTirl = Co - UkTr 2. (3.7)

The block-LU update was first discussed in [GMSW84].' All updating infor-
mation is carried along via the Schur-complement matrix Ck and the matrix of
transformed columns Yk. The updates to these matrices will be discussed in the
next section. Note that Ck is composed of some of the rows of Yk. It may be de-
scribed as 'some of the rows and columns of the simplex tableau associated with
the starting basis B0".

3.1. Advantages

The block-LU update has most of the advantages of the SC update, in terms of using
B0 as a "black box". The storage for Ck remains independent of m. By storing Yk
we reduce the work per iteration of the simplex method by a solve with B0 and (in
Phase 1) a solve with BoT. For many iterations when a row of Yk is needed to update
Ck, we avoid a further solve with B0.

Comparing the right-hand sides of (2.5) and (3.5), we see that the term Vky2
has become YkY2, which is usually somewhat more expensive. The analogous term
YkTCo in (3.6) costs little because most of it does not require updating.

3.2. Stability

The block-LU update possesses the same stability properties as the SC update. The
main requirement again is that B0 be reasonably well-conditioned.

In practice we can prevent excessive ill-conditioning in Bo by replacing certain
columns with the unit vectors associated with slack variables, according to the size
of the diagonal elements in the initial LU factors. A rather lax tolerance is needed to
prevent altering the basis after every factorization and thereby impeding convergence
of the simplex method. In the computational tests reported here, provision was
made to altered B0 if its condition appeared to be greater than C 2 / 3 ; 1010 (where
the machine precision was E ;, 10-15). However, no such alterations occurred.
Thus, after every 100 iterations the current Bk was always accepted as Bo, and no
numerical difficulties were encountered.

'It was termed a stabilized product-form update because the columns of Y are handled similarly

to the "eta" vectors in the classical product-form update, and because the factors of BO are not
altered. Note however that (3.1) is an explicit block-triangular factorization. Nothing is held in
product form.
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4. Implementation issues

For the block-LU update to be efficient, we must be able to update Ck and Yk
efficiently at each iteration. The updates to these matrices consist of four cases:

1. Add a row and column to Ck, and add a column to Yk.

2. Replace a column of Ck and Yk.

3. Replace a row of Ck, leaving Yk unchanged.

4. Delete a row and column of Ck, and delete a column from Yk.

Each of these cases depends on the type of column entering or leaving the basis
and whether or not the columns were in the initial B0 . A description of each case
follows.

CASE 1: The entering column is from No, and the leaving column is from Bo. A
row and column are added to Ck:

Uk+ 1 - ( and Yk+l=(Yk W), (4.1)
(-Ck )k) 42

Ck+1 = Uk+l Bo1 Vk+l = UkW (4.2)

where Bow = aq and 6 = eTw. Note that w is already available from (2.3) in
the simplex algorithm. It becomes a new column of Y,.

CASE 2: The entering column is from No and the leaving column is from Vk (not
from Bo). A column of Ck is again replaced by Ukw, which is already available
from the simplex algorithm. The dimension of Ck stays the same. A column
in Yk is replaced by the new transformed column w.

CASE 3: The entering column is from Bo and the leaving column is from B0 . A
row of Ck is replaced with the p-th row of YA,. The dimension of Ck stays the
same. Ys is not altered.

CASE 4: The cntering column is from B0 and the leaving column is from Vk (and
not from Bo). We delete a row and column from Ck and we delete the corre-
sponding column from Yk.

4.1. Storage of Ck

The size of Ck will never be larger than the refactorization frequency. Since this
is relatively small for most large-scale LP problems (we used 100), it is efficient to
treat Ck as a dense matrix.

For maximum reliability, we maintain a dense orthogonal factorization QkCk =

Rk, where Qk is orthogonal and Rk is upper triangular. The techniques for updating
the QR factors of Ck involve sweeps of plane rotations as discussed in [GGMS74].
A set of routines called QRMOD were used for this purpose. For slightly greater
efficiency, Qk and Rk may be updated using sweeps of stabilized elimination matrices;
see JCli77].



5. Computational Results 7

4.2. Storage of Yk

As Yk has a row dimension of m, the method of dealing with this matrix is impor-
tant. Yk consists of transformed columns that have entered the basis since the last
refactorization. We must be able to do matrix-vector multiplies with Yk (3.5) and
ykT (3.6) as well as fetch rows of Yk (4.2). The sparsity of each column of Yk depends
on the sparsity of the basis itself as well as the sparsity of each of the entering basic
columns.

Since the use of indirect addressing reduces performance on most vector com-
puters, indirect adressing should be avoided for all except very sparse vectors. On
the other hand, performing computations with vectors containing a very large pro-
portion of zero elements is also inefficient. With this in mind, each column of Yk
is stored in one of two ways depending on its density. We have used the following
dynamic storage scheme for Yk:

1. A column of Yk that has a density of at least NTHRSH is considered to be dense.
Such columns are stored "as is" and not packed. In the computational tests,
a value of NTHRSH = 0.40 was used.

2. Columns with density less than NTHRSH are considered sparse and are packed
in a conventional column list. For each column, the nonzero elements of these
vectors are stored contiguously, along with a parallel array of row indices, the
number of nonzeros, and a pointer to the first nonzero.

The average sparsity for Yk's columns for each of the test problems is given in
Table 4. A row of Yk can be extracted trivially from columns in dense form. Packed
columns require a search for the desired row index, which can usually be vectorized.

5. Computational Results

In this section we compare numerical results obtained from an implementation of the
algorithm described in Section 3. The standard basis update in MINOS 5.3 [MS87]
is the Bartels-Golub update. For a complete discussion of LUSOL, the package of
basis routines in MINOS 5.3, the reader is referred to 1GMSW87].

The implementation of the block-LU update has been included as an option
in a specially modified version of MINOS 5.3. The new version, MINOS/SC 5.3,
includes other options including a special pricing routine designed especially for
vector computers described in [FT88], and a vectorization algorithm for the solution
of triangular systems of equations described in [ER90]. These options were disabled
for the present computational tests.

The purpose of the tests is to demonstrate the efficiency of the new update and
show that for vector machines the method is more efficient than the Bartels-Golub
update on a representative set of large, sparse problems. The two algorithms are
labeled BG for the Bartels-Golub update and BLU for the block-LU update. The
tests consist of comparing timings of BG and BLU by solving 30 linear programming
test problems. Many of these problems are available from the netlib collection
[Gay85]. The test problem specifications are given in Table 1. The smallest nellib



8 A Block LU Update

test problems were omitted from the results, as some timing categories for these
problems were less than 1/100th of a second on the machine used.

5.1. Test environment

The computational tests were performed on an 8-processor Cray Y-MP supercom-
puter. Only one processor was used. The operating system was UNICOS version 5.1,
and the MINOS code was compiled using the CFT77 compiler with full optimization.
Each run was made as a batch job.

For each test the number of iterations and total solution time are recorded in
Table 4. The solution time was measured by timing the MINOS subroutine M5SOLV.
The options used for MINOS were the standard MINOS/SC options, namely PARTIAL
PRICE 10, SCALE OPTION 2, FACTORIZATION FREQUENCY 100. The set of prob-

lems was then run with (BLU) and without (BG) the SCHUR-COMPLEMENT option.
For purposes of evaluating the block-LU update, the following items were deemed

to be of interest for each method:

1. Total and average time spent updating the basis.

2. Total time spent solving for dual variables 7r and the search direction Yk using
the basis factors.

3. Average solve times with the basis factors.

5.2. Updates

Time spent updating the basis was measured by timing the appropriate portion of
the MINOS subroutine M5SOLV. The total and average updating times are recorded
in Table 2. These results dramatize the efficiency of the block-LU update for the
Cray Y-MP. In 27 of the 30 test problems the BLU method gave faster mean and
total updating times than BG. The average update speedup was 4.14. A point of
interest is that while update times grew for the larger problems using method BG,
the average update time remained fairly constant for method BLU. The average BG
update time ranged from 3611 - 80266 microseconds, while the range was 2673 -
11508 microseconds for the BLU update.

5.3. Solves

The average solve times for the two methods are quite similar, as exhibited in
Table 3. It is important to note that although it was not performed here, the solves
with Lo and Uo can be vectorized with method BLU. The solves with L0 may be
vectorized for method BG but as Uk is updated explicitly with this method, To is
not constant between refactorizations. This means that it is possible to decrease
solution times with the factors of /o using method BLU even further.
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5.4. Comparison with the product-form update

On average, the density of the columns of Yk will be similar to that of the eta
vectors in the classical product-form update. Note however that over a period of
100 iterations the average number of columns in Yk is only 25 to 40, with a mean
of 34. This means that the number of transformed vectors used in solving systems
of equations is lower for the block-LU method than for the PF update, where the
average would be 50 if stability requirements allow 100 updates. Since the size of the
additional matrix Ck is small on average (25 to 40), this suggests that the block-LU
update requires fewer floating-point operations per solve as well as lower storage
requirments than the PF update on large problems. The ratio is 34/50 ; 2/3.

5.5. Conclusions

1. A block-LU update technique is a viable alternative to a standard (Bartels-
Golub) updating technique when vectorization is available.

2. Numerical experiments running a modified version of MINOS 5.3 on a Cray
Y-MP showed the block-LU update to be superior to Bartels-Golub updating
on 27 of 30 test problems.

3. Average solve times with basis factors using the block-LU update were com-
parable to the solve times using the standard method.

4. Use of the block-LU update reduced CPU times by approximately 21% on
these test problems. Vectorization of all the solves with Lo, U0 , LT, U0

T as in

[ER90] would give a further marked improvement.
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No. Problem I Rows [ Cols Elem Objective value

1 80bau3b 2263 2266 29063 9.8722822814E+05
2 bp822 822 825 11127 5.5018458595E+03
3 cycle 1904 1907 21322 -5.2263930249E+00
4 czprob 930 933 14173 2.1851966988E+06
5 etamacro 401 404 2489 -7.5571519542E+02
6 fffff800 525 528 6235 5.5567961167E+05
7 ganges 1310 1313 7021 -1.0958627396E+05
8 greenbea 2393 2396 31499 -7.2462397960E+07
9 grow22 441 444 8318 -1.6083433648E+08

10 nesm 663 666 13988 1.4076079892E+07
11 perold 626 629 6026 -9.3807558690E+03
12 pilot.ja 941 944 14706 -6.1131579663E+03
13 pilot.we 723 726 9218 -2.7201045880E+06
14 pilot4 411 414 5145 -2.5811392641E+03
15 pilotnov 976 979 13129 -4.4972761882E+03
16 pilots 1442 3652 43220 -5.5760732709E+02
17 scfxn2 661 664 5229 3.6660261565E+04
18 scfxn3 991 994 7846 5.4901254550E+04
19 scrs8 491 494 4029 9.0429998619E+02
20 scsd6 148 151 5666 5.0500000078E+01
21 scsd8 398 401 11334 9.0499999993E+02
22 sctap3 1491 1494 17554 1.4240000000E+03
23 ship081 779 782 17085 1.9090552114E+06
24 shipl2l 1152 1155 21597 1.4701879193E+06
25 shipl2s 1152 1155 10941 1.4892361344E+06
26 stair 357 360 3857 -2.5126695119E+02
27 stocfor2 2158 2161 9492 -3.9024408538E+04
28 tdesgl 3500 4050 18041 4.3560773922E+04
29 tdesg5 4215 22613 105002 4.3407357993E+04
30 woodw 1099 1102 37478 1.3044763331E+00

Table 1: Problem specifications.
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Method BG: UBO BL U: OBLU C !JBG/UBLU

Total Mean Total Mean Mean Update
No. Problem update update update update size speed-

name time time time time Ck up
(sec) (It see) (sec) (,usec) I I___

1 80bau3b 35.79 30137.88 3.87 3385.17 33.99 8.90
2 bp822 13.50 20079.65 3.83 5471.75 25.66 3.67
3 cycle 11.60 36633.00 2.91 9745.26 37.74 3.76
4 czprob 2.49 16289.44 0.67 4228.94 37.20 3.85
5 etamacro 0.39 7130.00 0.50 8427.22 34.73 0.85
6 fffff800 0.97 10281.49 0.79 7898.30 36.01 1.30
7 ganges 1.22 17342.51 0.44 6180.37 40.44 2.81
8 greenbea 118.99 46059.83 18.87 7391.08 31.06 6.23
9 grow22 1.28 18483.14 0.81 11508.06 40.50 1.61

10 nesm 3.64 12021.19 1.57 5621.24 30.99 2.14
11 perold 6.64 17083.67 1.82 4787.23 23.68 3.57
12 pilot.ja 14.98 23820.10 3.31 5134.65 24.27 4.64
13 pilot.we 7.55 15853.32 2.18 4737.04 24.65 3.35
14 pilot4 1.76 12291.56 0.66 4567.76 23.23 2.69
15 pilotnov 6.78 24923.93 1.57 5679.31 26.80 4.39
16 pilots 117.55 72976.57 8.89 5388.31 24.12 13.54
17 scfxm2 0.88 11478.61 0.64 8299.71 39.82 1.38
18 scfxm3 1.97 16756.42 0.98 8236.08 40.40 2.03
19 scrs8 0.64 9984.70 0.34 6497.42 29.36 1.54
20 scsd6 0.40 3611.14 0.85 7396.47 33.84 0.49
21 scsd8 2.83 8415.58 3.58 10152.39 40.66 0.83
22 sctap3 2.61 26277.24 0.64 5952.07 41.13 4.41
23 shipO81 0.71 13613.07 0.14 2673.06 42.42 5.09
24 shipl21 2.10 18806.31 0.31 2747.94 40.92 6.84
25 shipl2s 0.93 17370.72 0.20 3632.95 42.79 4.78
26 stair 0.67 12352.67 0.29 5270.27 24.60 2.34
27 stocfor2 7.29 36568.73 2.19 9562.93 39.75 3.82
28 tdesgl 24.98 60392.59 2.31 5950.65 39.59 10.15
29 tdesg5 271.51 80266.15 27.61 7774.24 40.12 10.32
30 woodw 7.67 20271.52 2.63 6807.28 37.37 2.98

MEAN 22.34 23919.09 3.18 6370.17 34.26 4.14

Table 2: Update Results.
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Method BG: BL U:
Mean Mcran Mean Mean

No. Problem solve solve solve solve
name y r Y

_____I___ (jisec) (psec) (gsec) (psec)

1 80bau3b 40568.12 32337.06 41853.63 27891.02
2 bp822 28050.47 27790.85 26730.54 22025.21
3 cycle 34750.42 44877.62 37200.98 39155.63
4 czprob 17566.18 12823.63 19565.78 10986.37
5 etamacro 8594.14 8356.12 10980.39 6787.33
6 fffff800 10509.23 12726.54 12594.22 11379.08
7 ganges 14002.71 17897.94 17465.92 16229.53
8 greenbea 67136.65 54699.46 70031.12 47843.61
9 grow22 21071.95 22581.79 19877.60 16715.92

10 nesm 14057.41 14433.41 14532.32 10878.63
11 perold 22935.79 23822.10 20340.22 16273.83
12 pilot.ja 30307.37 32987.48 26348.98 23197.10
13 pilot.we 24727.20 25234.13 22966.24 18282.15
14 pilot4 18750.67 18488.82 13718.79 10770.45
15 pilotnov 29968.91 32639.40 26490.74 23707.26
16 pilots 66454.81 65155.80 48638.38 44065.14
17 scfxm2 13580.72 13348.56 16225.99 11929.60
18 scfxm3 19622.53 19358.95 22415.36 17280.10
19 scrs8 12217.33 11776.33 12735.71 7971.36
20 scsd6 6011.64 4875.61 8348.29 4777.12
21 scsd8 16193.41 12426.66 18668.06 11411.83
22 sctap3 14512.53 20346.93 18591.30 19643.66
23 ship081 14065.56 9978.80 17703.06 10714.05
24 shipl2l 16048.90 12260.41 18865.25 12051.95
25 shipl2s 16948.28 12683.65 20275.87 12718.61
26 stair 17300.74 17629.60 12552.57 9661.55
27 stocfor2 30451.35 40716.96 34382.52 36011.83
28 tdesgl 52146.37 50159.20 54627.08 46676.17
29 tdesg5 80847.35 69401.81 85958.77 67876.06
30 woodw 27375.91 24530.58 28535.34 20750.70

MEAN 26225.82 25544.87 26640.70 21188.76

Table 3: Solve results.
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Method BG: BLU:

No. Problem Itns Soln. Itns Soln. Mean
name time time dens.

(secs) (sees) Yk
1 80bau3b 11963 206.22 11425 166.94 .022
2 bp822 6792 71.70 6999 58.64 .621
3 cycle 3198 51.92 2987 39.63 NA
4 czprob 1544 11.97 1595 10.48 .016
5 etamacro 550 2.00 594 2.25 .159
6 fffff8OO 953 4.85 996 4.95 .277
7 ganges 708 5.78 718 5.34 .051

8 greenbea 26094 622.14 25527 493.56 .223
9 grow22 704 6.39 703 4.99 .691

10 nesm 3058 21.96 2792 17.66 .121
11 perold 3923 35.74 3801 25.71 NA
12 pilot.ja 6350 80.46 6445 58.94 .640
13 pilot.we 4805 48.17 4611 37.24 .719
14 pilot4 1446 9.98 1446 6.90 .577
15 pilotnov 2747 35.04 2773 26.65 .568
16 pilots 16267 577.24 16494 347.56 .736
17 scfxm2 772 4.33 772 4.24 .094
18 scfxn3 1184 9.61 1184 8.83 .104
19 scrs8 647 3.30 521 2.33 .155
20 scsd6 1127 3.12 1153 3.76 .343
21 scsd8 3400 22.17 3531 24.45 .338
22 sctap3 1003 9.72 1070 8.80 .024
23 ship08l 526 4.02 523 3.66 .011
24 shipl2l 1125 12.10 1113 10.58 .007
25 shipl2s 538 4.60 544 4.12 .006
26 stair 551 3.62 551 2.45 .655
27 stocfor2 2014 31.50 2292 30.28 .088
28 tdesgl 4177 95.50 3878 69.27 NA
29 tdesg5 34177 1334.49 35518 1144.78 .070
30 woodw 3822 65.17 3860 58.56 NA

MEAN 4872.16 113.16 4880.53 89.45 .291

Table 4: Overall Problem Results.
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